Skip to content
Permalink
803fccfd50
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
100 lines (75 sloc) 2.96 KB
#Importamos pytorch
import torch
#Transformadores de imagenes para preprocesar la entrada
from torchvision import transforms
#Cargadores de Datos que introducen los datos al modelo
from torch.utils.data import DataLoader
#OpenCV para recortar la imagen al final
import cv2 as cv
#Numpy para trabajar con arrays y matplotlib para ver las imagenes
import numpy as np
import matplotlib.pyplot as plt
#Para cargar las imagenes
from PIL import Image
#Bibliotecas de google
from libs.vit_seg_modeling import VisionTransformer as ViT_seg
from libs.vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg
import os
import warnings
warnings.filterwarnings("ignore")
#############################################################################
# #
#############################################################################
def get_conf():
dictionary = {
"INPUT_SIZE" : 256,
"TRANSFORM" : transforms.Compose([transforms.Resize((256, 256)),transforms.ToTensor()])
}
return dictionary
class VisionTransformerModel(torch.nn.Module):
def __init__(self, configs):
super(VisionTransformerModel, self).__init__()
self.model = ViT_seg(configs, img_size=get_conf()["INPUT_SIZE"], num_classes=1)
def forward(self, x):
img_segs = self.model(x)
return img_segs
class TestDataset(torch.utils.data.Dataset):
def __init__(self, images, transform):
self.images = images
self.transform = transform
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = Image.open(self.images[idx]).convert("RGB")
image = self.transform(image)
return image
def tensor_to_image_3(tensor):
img_channels = []
for channel in tensor:
tensor_np = channel.numpy()
min_val = np.min(tensor_np)
max_val = np.max(tensor_np)
tensor_normalizado = (tensor_np - min_val) / (max_val - min_val)
arraynp = (tensor_normalizado * 255).astype(np.uint8)
img_channels.append(arraynp)
imagen_rgb = np.stack(img_channels, axis=-1)
imagen_rgb = imagen_rgb.astype(np.uint8)
return Image.fromarray(imagen_rgb)
def tensor_to_image_1(tensor):
tensor_np = tensor.numpy()
min_val = np.min(tensor_np)
max_val = np.max(tensor_np)
tensor_normalizado = (tensor_np - min_val) / (max_val - min_val)
arraynp = (tensor_normalizado * 255).astype(np.uint8)
imagen_rgb = np.stack((arraynp,)*3, axis=-1)
return Image.fromarray(imagen_rgb)
def cut_object(img, pred, threshold=60, background=[255, 255, 255]):
color_inferior = np.array([0, 0, 0])
color_superior = np.array([threshold, threshold, threshold])
mascara = cv.inRange(pred, color_inferior, color_superior)
nuevo_color = background
img[mascara == 0] = nuevo_color
return img
def highlight_object(img, pred):
resta = cv.subtract(img, pred)
return resta